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Cyclopropanation of 3-(N,N-dibenzylamino)cyclohexene with

either Zn(CH2I)2 (Wittig–Furukawa reagent) or CF3CO2-

ZnCH2I (Shi’s reagent) gives the corresponding syn-cyclopro-

pane as a single diastereoisomer, whilst cyclopropanation of

3-(N-tert-butoxycarbonylamino)cyclohexene with CF3CO2-

ZnCH2I gives the corresponding anti-cyclopropane exclusively;

facile N-deprotection gives access to either diastereoisomer of

the trifluoroacetic acid salt of 2-aminobicyclo[4.1.0]heptane.

The Simmons–Smith cyclopropanation reaction has been one of

the most widely used methods to promote the stereospecific

conversion of an olefin into a cyclopropane for nearly 50 years.1

New classes of highly reactive zinc carbenoids have recently been

developed;2 the efficient cyclopropanation of isolated and electron

poor double bonds is now possible and the substrate scope of the

reaction is therefore immensely broad.3 Diastereoselective cyclo-

propanation relying upon delivery of the incoming methylene

group by the binding to zinc of an allylic hydroxyl group has long

been exploited3 although other groups including a,b-unsaturated

acetals,4 amides5 and boronates6 have also been shown to enable

diastereoselective reaction. Although allylic amines have the same

potential for directing cyclopropanation, the competing formation

of a zinc-complexed ammonium ylide often thwarts cyclopropana-

tion.7 The successful Simmons–Smith cyclopropanation of allylic

amines has only very recently been achieved8 by the groups of

Aggarwal9 and Katagiri,10 who utilised N-protecting groups

bearing a free hydroxyl to promote cyclopropanation. As part of

an ongoing research programme directed towards chemo- and

stereoselective functionalisation of allylic amines at the olefin,11 we

became interested in the potential of allylic amines as substrates for

the Simmons–Smith reaction and communicate herein the

cyclopropanation of a range of N-protected 3-aminocyclohexenes

which facilitates the stereoselective preparation of either diaster-

eoisomer of the TFA salt of 2-aminobicyclo[4.1.0]heptane.

Initial studies focused on cyclopropanation of 3-(N,N-dibenzyl-

amino)cyclohexene 1. Attempted cyclopropanation of 1

with Zn(CH2I)2 (Wittig–Furukawa reagent)12 or Zn(CH2Cl)2

(Denmark’s reagent)13 proceeded with almost complete consump-

tion of starting material,14 furnishing a low mass return of

cyclopropane syn-2, isolated in only 11 and 33% yield respectively.

Cyclopropanation of 1 with CF3CO2ZnCH2I (Shi’s reagent),2a,c

however, proceeded in complete conversion to furnish syn-2 in

.98% de15 (consistent with chelation-directed cyclopropanation)

which was isolated in 92% yield (Scheme 1).

The N-protecting groups were next varied, in order to probe the

possibility of preparing the corresponding anti-cyclopropane, with

phthalimido and tert-butoxycarbonyl groups investigated.

Reaction of 3-(N-phthalimido)cyclohexene 3 with Zn(CH2I)2

proceeded to 27% conversion (after 3 hours), giving a 1 : 4

mixture of syn-4 : anti-5,16 whereas reaction with CF3CO2ZnCH2I

under identical conditions gave 62% conversion to a separable 1 : 4

mixture of syn-4 : anti-5, from which syn-4 and anti-5 were isolated

pure in 8 and 33% yield respectively (Scheme 2). The stereo-

chemistry of the major product anti-5 was proven unambiguously

via independent chemical synthesis from cyclohex-2-enol 6 and

that of the minor product syn-4 by single crystal X-ray crystal-

lographic analysis (Fig. 1).{17,18 Although the cyclopropanation

facial selectivity appears to be predominantly under steric control,

competing chelation by the carbonyl group may give rise to the

minor product syn-4.
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Scheme 1 Reagents and conditions: (i) Et2Zn, CH2I2, DCM, rt, 1 h; (ii)

Et2Zn, ICH2Cl, DCM, rt, 1 h; (iii) Et2Zn, CH2I2, TFA, DCM, rt, 1 h.

Scheme 2 Reagents and conditions: (i) Et2Zn, CH2I2, DCM, rt, 3 h; (ii)

Et2Zn, CH2I2, TFA, DCM, rt, 3 h; (iii) Et2Zn, ICH2Cl, DCM, rt, 1 h; (iv)

phthalimide, PPh3, DEAD, THF, rt, 24 h.
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Cyclopropanation of 3-(N-tert-butoxycarbonylamino)cyclohex-

ene 819 with Zn(CH2I)2 gave complete conversion to syn-11 in

.98% de,20 isolated in 67% yield, and cyclopropanation of 8 with

CF3CO2ZnCH2I gave anti-12 in .98% de21 and in 70% yield

(Scheme 3). The complementary selectivities of these reactions are

postulated to be a result of initial formation of an intermediate zinc

complex by deprotonation of the carbamate. In the case of

Zn(CH2I)2, the co-ordinated zinc carbenoid 9 is able to effect

rapid, intramolecular, syn-cyclopropanation of the double bond to

give syn-11; with CF3CO2ZnCH2I, however, a second equivalent

of the zinc reagent is required to cyclopropanate the double bond

of 10 by approach to the least hindered face, giving anti-12

(Fig. 2).22 Consistent with this hypothesis, treatment of 8 with 1

equiv. of Zn(CH2I)2 gave 37% conversion to syn-11 after 1 hour,

whereas analogous treatment of 8 with 1 equiv. of

CF3CO2ZnCH2I gave no observable cyclopropanation products.

In order to confirm the assigned stereochemistries of the

cyclopropane products, and to demonstrate the utility of this

protocol for synthesis, cleavage of the N-protecting groups was

investigated. Hydrogenolysis of syn-2 and treatment of the crude

product with TFA gave syn-13 in quantitative yield. Cleavage of

the N-Boc protecting group of both pure syn-11 and pure anti-12

was achieved upon treatment with TFA, giving the corresponding

trifluoroacetate salts syn-13 and anti-14, both in quantitative yield.

Removal of the N-phthaloyl group from syn-4 and anti-5 (of

known stereochemistry) was achieved upon treatment with

hydrazine, with subsequent treatment with TFA giving the

corresponding trifluoroacetic acid salts syn-13 and anti-14

(Scheme 4).

In conclusion, a highly diastereoselective cyclopropanation

protocol for allylic tertiary amines and carbamates has been

demonstrated, giving, after facile N-deprotection, access to either

diastereoisomer of the trifluoroacetate salt of 2-aminobicy-

clo[4.1.0]heptane in good yield. Further investigations to fully

delineate the scope of this methodology with application to natural

product synthesis are currently ongoing.
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